Weird Universe: 10 of the Strangest Objects Ever Discovered

These structures are equally massive and intriguing.

A Whole Lot Of Weird
To quote the late Douglas Adams (the beloved author of “The Hitchhiker’s Guide to the Galaxy”), “Space is big. Really big. You just won’t believe how vastly, hugely, mind-bogglingly big it is. I mean, you may think it’s a long way down the road to the chemist’s, but that’s just peanuts to space.”

Truer words have never been spoken. In fact, the universe is so big that its size and scope is nearly incomprehensible, even to the most knowledgeable and open-minded individuals. With a diameter of more than 93 billion light-years, it’s not too surprising that so many extreme objects are lurking out there within it.

In this list, we’ve gathered the most massive and bizarre structures found in the universe.

Many of them are actually a collection of objects held together by the immense force of gravity. And since space is so big, none of our Earthly means of measuring distances will suffice, so for the sake of this article, we’re going to use light-years (the rate at which light travels through space in one year) as a unit of measurement.

Just so you have an idea of the kind of scales that we are talking about, light travels at 300,000 kilometers (186,000 miles) per second, which equals out to 5,878,000,000,000 miles (9,461,000,000,000 km) each year. Therefore, at this rate, it would take light more than 4 years of traveling at top speed to reach the Alpha Centauri triple-star system, and they are the closest stars to our Sun. Our galaxy, the Milky Way, is so long, it would take light more than 100,000 years of traveling to cross it.

1: Swift J1357.

We start this list with the closest structure to Earth (and the only one actually located in our galaxy), formally known as Swift J1357.2. Located almost 5,000 light-years from Earth in the constellation of Virgo, the structure itself is one of the least understood of this list, but physicists believe that it is based around a binary system containing a star and a stellar-mass black hole.

The companion star in the system makes a complete orbit around the center of the system’s mass in the shortest orbital period known of at this time, just in 2.8 hours.

Contrary to popular belief, black holes are not cosmic vacuum cleaners that siphon all material located within the general vicinity of them. Instead, black holes only consume matter that dwells too close to them (coming within the so-called “event horizon,” which is basically the point beyond which nothing, not even light, can escape).

Gravitational perturbations can be the catalyst for this, causing an object (or a collection of matter) in a stable orbit around a black hole to veer off course, sending it spiraling inward. Because of this, it’s not uncommon for more material to collect than the black hole can consume at any given time. This material is known to build up and form something called an accretion disk.

The structure known as Swift J1357.2 is likely similar in design to one of these disks. Unlike its normal counterparts, this particular one has formed in the outer layer of the accretion disk and acts like a wave (traveling in an outward vertical direction instead of horizontally), which has resulted in a systematic “dimming” of the companion star every few seconds.

Prev1 of 9Next

Leave a Reply

Your email address will not be published. Required fields are marked *